OCTOBER 2023 EBS 142P GENERAL PHYSICS PRATICAL I 1 HOUR 15 MINUTES

Candidate's Index Number			
Signature:			

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, SEPT./OCT. 2023

5TH OCTOBER 2023

GENERAL PHYSICS PRATICAL I

3:00 PM - 4:15 PM

[60 MARKS]

Answer ALL the questions.

1. In a laboratory experiment, the spring-mass set-up below was used.

Apparatus for Hooke's Law Lab

Different masses M were suspended from the end of a helical spring and the new lengths L, corresponding to the suspended masses M, were recorded as in Table I below:

Table I:

M/g	L/cm	e/cm
0.0	18.2	0.0
20.0	18.8	0.6
40.0	19.5	
60.0	20.1	
80.0	20.6	
100.0	21.2	

Page 1 of 2

- a. Copy and complete Table I for the extensions \mathbf{e} produced by finding the difference between the original length (for $\mathbf{M} = 0.0\mathbf{g}$) and the new lengths due to the masses. (4 marks)
- Using the information on Table I, plot a graph with extension e on the vertical axis and the masses M on the horizontal axis.
- c. Determine slope K of your graph.

(4 marks)

- d. Use your graph to estimate the extension in the spring, if a mass 70 g were to be attached to the spring.

 (3 marks)
- 2. The masses attached to the spring in 'Q1' above were each given slight vertical displacements and released for the spring-mass system to undergo oscillations. The time t, for 20 oscillations were recorded as shown in Table II below.

Table II

M/g	t/s	T = t/20 s	T^2/s^2
20.0	13.25		
40.0	26.30		
60.0	39.50		
80.0	52.47		
100.0	65.75		

a. Copy and complete the table for values for the period T and T^2 . (10 marks)

b. Plot a graph with T^2 as ordinate and M as abscissa.

(16 marks)

c. Determine slope S of the graph.

(3 marks)

- d. State any **two** precautions needed to be taken in performing the experiment described above. (4 marks)
- e. Mention any **two** safety rules that must be observed while conducting experiments in a Physics laboratory. (4 marks)